BEHOLD THE WATERWORLD

Waterworld2.jpg

In Kevin Costner’s Waterworld (the 1995 movie) the Earth’s polar ice caps have melted completely, drowning the entire planet. In reality, there isn’t enough ice for that to actually happen (thank goodness, because we’re certainly doing a number on the ice we do have), but that doesn’t mean that a waterworld isn’t possible somewhere else. Even within our own solar system, giant moons like Ganymede and Europa are thought to be mostly ocean covered by ice. Elsewhere in the galaxy, a fair number of near-Earth-sized planets have been discovered that scientists believe could be substantially made of water, including Gliese 1214b and Kepler 62e. (Exoplanets are named after their parent star, with a lower case letter signifying their position among the star’s planets—“a” being the closest. These days, stars are most often named according to the sky survey and/or telescope responsible for their discovery.) A solar system thirty-nine light years from Earth known as TRAPPIST-1 is in a very favourable position to be studied, and is thought to have four waterworlds among its seven-planet roster. One of them might be composed of as much as 50% water! (Earth is only between .5% - 1.0% water.)

How do we know all this?

It’s important to explain that scientists discover exoplanets by noting the dimming of the light as the planet crosses in front of its star. Adding careful timing measurements, they can distinguish how many planets there are in the system and their orbital speeds, and determine from there the approximate sizes and masses of the planets. If the positioning is right, they can do spectrographic analysis of the star’s light passing through the planet’s atmosphere, giving them some idea of the planet’s composition. All of this data is compared to what we know about rocky planets like Earth and gas giants like Neptune. Stir the numbers all together and…voilà, an artist’s rendition complete with colours and swirling clouds and….

Well, OK, let’s just say that there’s still a fair bit of speculation involved. But they’re good guesses. So it’s reasonable to assume that a fair number of planets out there in the habitable zones of their stars (warm enough for liquid water) are really wet. That could be a good thing (on Earth water is always associated with life) or a bad thing (without land, where would life forms get minerals and other nutrients? A really deep ocean would have ice covering the bottom due to pressure, preventing material from leaching out of the ground beneath.)

The science fiction writer/futurist will say, “Aha, but who knows what forms alien life can take? Before we discovered thriving colonies of life around deep-sea hydrothermal vents we thought that all Earth life ultimately depended on photosynthesis. So there!” (We SF writers can sometimes be insufferable know-it-alls.) We’d also point out that a watery planet could be an excellent source of hydrogen for spacecraft fuel, and oxygen for, you know, breathing. Plus humans are pretty good at making floating things. As long as there are some metals and hydrocarbons around, we could readily make floating colonies that would produce food by growing algae and then farming algae-eating sea life. Underwater habitats are also cool—I’ve written about them myself. Comic books and B-movies love whole underwater cities, but there have to be very strong reasons to take on that challenge (maybe mining the materials needed for the floating colonies!) Certainly, advancements in super-strong nano-materials will make those ventures more feasible. Water planets could also provide protection against hard radiation from space, asteroid strikes, or even interplanetary war. And, dare I say it, they’re the perfect setting for pirates! (Though that is wandering across the line into fantasy.)

Even with all of this potential, I’m not aware of many science fiction stories set on or under the water on planets other than Earth, maybe because our own oceans are still enough fertile territory for the imagination. You might set me straight on that. Or you might want to take that ball and run with it yourself.

Just don’t expect anybody to make a movie of your book. Kevin’s was a bomb.

LOOKING AT THINGS IN A DIFFERENT WAY

Interstitium.jpg

Maybe you’ve heard the news about a new organ being discovered in the human body. After all of the centuries that human anatomy has been studied, how can that be? Because of a new scientific procedure that offered a fresh perspective.

While its status as an organ is still open to debate, it’s being called the interstitium, from Latin words meaning “between places”. It’s long been known that there was a lot of fluid between our skin and our organs, around the organs, and sometimes in pockets within them. The human body is sixty percent water, after all, most of it inside cells, but not all. The rest is considered interstitial fluid—liquids in between. But a new way of looking at tissues microscopically in a living body allowed researches to discover that there’s actually a connected network of fluid-filled sacs supported by a structure of collagen fibres (the protein in skin and many connective tissues). It was never seen before because when scientists prepared microscope slides of tissues, the process allowed the fluids to leak out and the sacs collapsed (think of a punctured balloon).

The authors of the new study claim that, because these in-between collections of fluid-filled sacs are connected, they likely function collectively and should be considered an organ like any of the others. It may be that the interstitium acts as a shock absorber to protect the organs from jarring movements. One of the things we know it does is to produce lymph, the fluid associated with our immune system and the source of white blood cells that battle disease. Gaining a better understanding of the interstitium as an organ should help us to better understand how diseases and cancer spread throughout the body.

Surprise! A new organ. Who’d have thunk it?

The lesson to take from this discovery, I think, is just how much can be accomplished by looking at ordinary things in a different way. The Hungarian physiologist credited with discovering vitamin C, Albert Szent-Gyorgi, said, “Discovery consists of seeing what everybody has seen and thinking what nobody else has thought.” Take Isaac Newton’s famous apple, for instance. For all of history people had seen things fall down. Newton was the first to wonder if all objects attract one another, and that strange idea led to our understanding of gravity.

Sometimes new technology makes the difference—the invention of the telescope is a perfect example—but even then the minds of Galileo and Copernicus had to make a leap that went against established thought. Dozens of inventions began with some kind of fortunate accident, but it took a flexible human mind to see the potential of the accidental result and turn it into something useful. (According to some, perhaps half of all discoveries involve something completely serendipitous.)

Scientific researchers and inventors may advance knowledge by seeing potential when things accidentally occur, but there’s one field of professionals who deliberately work to see the abnormal in normal things, and follow all of the implications.

Science fiction writers.

We ask the “what if” questions, and “if so, what then” and “what comes next?” It’s called “world-building” and “plot outlining” and just plain “daydreaming”. We’re not crazy, we just look at things in a different way. Properly harnessed, that can be a powerful force for good in the world. SF writers have sometimes been gathered together for temporary brain trusts involving specific subjects, but maybe it’s time for some farsighted CEO’s or political leaders to hire full-time teams of SF writers as advisors and analysts to describe the potential of technological developments or the possible implications of policy decisions.

Although, I guess there is another way to benefit from our specialized outlook.

Take a credit card to your favourite SFF bookstore and stock up.

MAPPING YOUR BRAIN WILL BE THE LAST THING YOU DO

brain graphic.jpg

In my last blog post I mentioned a new company that will sell you transfusions of a young person’s blood in an effort to gain some of their youth. OK, think of it as yet another “out there” rejuvenation treatment, but nobody gets hurt (if you can afford the $8000). But now a company called Nectome is offering to preserve a perfect copy of your brain. All it will cost you is $10,000…and your life.

Actually, the ten grand is a deposit to get on the waiting list—I’m not sure what the final price tag will be because the factory won’t be up and running for a few more years. But the “life” part, that is final. You see, their process embalms the brain with a fluid that preserves it as a glass copy, perfect in microscopic detail down to the last neural synapse (which can be seen with an electron microscope—they've already done it with the brain of a pig). And it has to be done while you’re still alive—the embalming process is what kills you.

Creeped out yet?

They’re counting on getting their business in states that allow assisted suicide, because that’s basically what it is. At least twenty-five people have already forked over the money.

So why would anyone do this? Well it’s like having your brain frozen, hoping some future generation will figure out how to revive you (and want to). Except, in this case, the glassified brain itself can’t be revived—the hope is that future scientists will be able to use the “brain map” to make a perfect digitized copy, at which point (they hope) your consciousness will find new life inside a computer environment. It’s called “uploaded consciousness”: digitizing your mind on hard drive media or the cloud. You won’t have a body, but you won’t have the drawbacks of one either (like dying).

Personally, I give this plan an unequivocal two thumbs down. I’ve been reading a lot about consciousness lately because the newest novel I’m working on is all about that and, the thing is, nobody knows what consciousness is. There are dozens of theories, and in the search for that elusive answer a huge amount has been learned about how the brain works. There’s a broad assumption that there’s a link between consciousness and the complexity of a brain, but that’s all it is—an assumption. There are also many researchers who believe that chimpanzees, cats, dogs, octopuses…even plants have some level of consciousness. And there’s absolutely no definitive evidence that the exact layout of your brain cells’ network connections (called the “connectome”, hence the company’s name) will automatically produce consciousness.

We know that it’s possible to turn consciousness off through the use of anaesthetic drugs, but we don’t even know exactly how they do that. Different anaesthetics work on different parts of the brain, so it seems there are numerous ways to interrupt consciousness, but that doesn’t enable researchers to point the finger at exactly which aspects of the brain make consciousness happen. The only theory I know of that offers an actual mechanism behind consciousness involves quantum theory and proposes that consciousness is a property of the universe as much as gravity and light, and somehow our brains are able to tap into the universal “proto-consciousness”. (It’s called Orch-OR and it’s way too complicated to explain here, but I kind of like it.) However, there’s no proof that any electronic construction could ever become conscious. In fact, the only reason people talk about “uploading consciousness” at all is because of the current popular assumption that our brains are like computers, and once we can create digital computers that can perform as many computational processes as our brains at equivalent speeds, voilà: computer consciousness arises like the Lady of the Lake.

It ain’t necessarily so. People once compared the brain to a telegraph switching station because it was the information processing technology they knew.

A world-wide consortium of researchers has simulated the 302 neuron ‘brain’ of a round worm called C elegans with great precision. Unfortunately the simulated C elegans just lies there—they can’t prod it into doing anything on its own. And even they wouldn’t argue that a worm is conscious. But if, with hugely powerful computers, they can’t make a working simulation of a brain that has only 302 neurons (compared to the hundred billion in the human brain), I have to think that something’s missing. I’m convinced that consciousness requires a whole range of processes, some of which we may never understand. The connectome of the brain is just one piece.

Even if we are someday able to upload consciousness (I am a science fiction writer, after all) Nectome, and the cryo-preservation companies like it, all presuppose that future generations will want to go to the trouble of reviving dead people from 2018. Why would they, except for, perhaps, a little anthropological curiosity about our life and times? Considering the yottabytes of information we’re producing on the internet, I’m sure one or two former-humans would be enough to fill in any gaps. If you’re Elon Musk or Donald trump, they might be interested in you (for vastly different reasons), but just another average millionaire with more money than you know what to do with…? Probably not.

So if endless selfies aren’t enough for you, and you’ve always wanted your grandchildren to have a molecularly-correct glass copy of your brain as a paperweight, then go ahead and spend the money. Just don’t expect it to make you immortal.

IS YOUNG BLOOD THE FOUNTAIN OF YOUTH?

Bloodstream.png

We can never know who was the first elder to wonder whether a dose of blood from somebody younger could make them young again, but I’ll bet it was near the dawn of the human race. In those days eating the victim was probably the preferred technique. Vampire mythology linked drinking blood with immortality and, of course, there was the infamous Hungarian Countess Elizabeth Bathory who supposedly bathed in the blood of young girls (though those stories probably aren’t true). But this is 2018—we can get a blood transfusion instead.

A recent episode of the CBC science program “Quirks & Quarks” included an interview with Dr. Saul Villeda, who’s been following up on earlier research into blood-swapping in mice. The process is called parabiosis and there was some promising research in the 1970’s which showed that the vital organs and brains of older mice could be rejuvenated when the mice were surgically joined to young mice and shared the same blood. After waning in popularity, the procedure has had a resurgence in the past decade with equally encouraging results and a strong focus on learning the chemical mechanisms involved. After all, if the blood of young mice can help the regrowth of muscle and liver cells, repair damaged spinal cords, enhance the growth of new brain cells, and even make the old mice’s fur shinier, think of the implications if this could work in humans. A clinical trial involving Alzheimer patients is not yet complete, but you can imagine the excitement a positive result would bring.

Various studies have attributed the benefits to the hormone oxytocin (levels in our bodies naturally decline with age), as well as a protein called growth differentiation factor 11 and, in Villeda’s research, to another protein called Tet2. There are probably others. Most of these substances seem to do their work by activating the body’s stem cells (generic cells that can become specialized cells as needed) and by making changes to cellular DNA. It’s important to note that identifying the active components removes the need to use actual blood to get the benefits. Compounds could be synthesized in laboratories. Studies have already shown that blood plasma is effective enough without using whole blood.

But science fiction writers ask, what if…?

What if it became widely confirmed that young blood was like a fountain of youth for older people? You can get a hint from a San Francisco & Tampa company called Ambrosia—they’re conducting clinical research offering patients blood transfusions from young donors for the price of $8,000 per litre or $12,000 for two litres in an outpatient treatment they say takes about two hours. Their study results haven’t been published yet, but so far they claim, “Our patients have reported improvements in areas such as energy, memory, and skin quality.”

For now, it’s just a metaphor that the ultra-wealthy of the world are “bloodsuckers, feeding on the poor”, but that could literally come true. The rich might buy perpetual youth and longer life from those who need to sell their very blood to buy food. And that’s the rosier scenario. Something tells me that a black market wouldn’t take long to develop. Criminal elements would get involved. Blood “donors” might be unwilling victims, assaulted or killed for their young blood.

SF writers before me have imagined societies where “organ-legging” is a widespread criminal activity keeping the wealthy in replacement organs when their own fail. What if the contraband is blood? Will we have a completely stratified society between a nearly immortal elite and an underclass with venous catheters installed at birth? Will Hollywood depend on a blood ghetto to keep its stars beautiful? What would the long-term effect of such things be on the human gene pool? And how long would it take before someone tried to use such methods to create a super race?

My opinion? Better to give these researchers lots of funding so they can find the chemicals involved and replicate them in factories, rather than wait until the blood of our young people becomes a hot commodity.

NANOBOTS TO THE RESCUE

 Image courtesy of ASU Biodesign Institute

Image courtesy of ASU Biodesign Institute

The invention of the microscope might not have started humankind’s interest in the study of very small things, but it certainly provided a major boost. Within the past century we’ve seen advancements like the electron scanning microscope that enables scientists to not only see atomic-sized objects but also manipulate them, and chemical technologies like CRISPR/Cas9 used to edit living genes. Nanoscience is making significant progress in medical fields, including  the prospect of some day having robotic devices too small to see programmed to circulate through our bloodstream and keep us healthy.

Maybe that idea was inspired by the 1966 movie Fantastic Voyage which featured a team of scientists in a submarine shrunk down to microscopic size, racing through a bloodstream to dissolve a potentially fatal blood clot and save a man’s life. Loving that idea (but reluctant to write about shrink rays) I wrote a (so-far-unpublished) novel and published a prequel story to it called “Shakedown” that featured a nano-scale submersible piloted remotely through the bloodstream using virtual reality. You can read “Shakedown” here. While both stories are science fiction, the reality is coming closer than ever.

New work performed by Arizona State University along with China’s National Center for Nanoscience and Technology is an astonishing step forward.

Cancer tumours are like other living tissue in that they need circulation of blood to survive. They have their own blood vessels, just like our skin and organs. So what if you could cut off that blood supply to a tumour without harming healthy cells around it?

Great idea—the problem is how to do it. We know that an enzyme called thrombin is used by the body to seal wounds and keep our blood from leaking out. Thrombin binds a substance called fibrin with platelets to produce clotting at the wound. A good thing. Mind you, blood clots in the wrong places can be deadly to tissues, causing embolisms and possibly strokes. A bad thing. Unless you could find a way to cause blood clots only in the blood vessels of cancer tumours.

That’s what the Arizona  and Chinese scientists have done, and in a brilliant way.

They had to solve two problems: how to deliver thrombin through the bloodstream to the site of the tumour, and how to keep it from accidentally affecting blood vessels of healthy tissue. The delivery system they developed uses DNA—yes, the stuff in our genes that carries the information that makes our bodies the way they are. Turns out DNA can be folded in lots of ways. So these scientists have performed DNA origami, making little DNA tubes with thrombin molecules inside them. Kind of like a tube of tennis balls. Then, to make sure this special package gets delivered only to the right address, they attached a chemical called a DNA aptamer that’s attracted to a protein only found on the surface of the tumour cells, not on healthy cells.

Apparently, the system has worked well in tumours in mice, producing substantial blockages and the consequent deaths of the tumour cells.

You’ll know by now that lots of work remains to be done before the technique can be used on humans, but there’s no reason to believe it won’t happen. And that’s just one example of the progress being made. Maybe, you’ll quibble, a folded tube of DNA isn’t exactly a robot, and a chemical bonding agent can’t truly be called “programming”. Well, I think that will come too, someday. In the meantime, every new nano-medical success is something worth celebrating.

IS OUR ELECTRONIC CIVILIZATION TOO VULNERABLE?

 2012 Coronal Mass Ejection (solar superstorm)

2012 Coronal Mass Ejection (solar superstorm)

In the 2003 movie The Core Earth’s molten core stops spinning, which causes the planet’s magnetic field to fail and disaster ensues. A team of brilliant scientists (played by some good actors like Aaron Eckhart and Hilary Swank) uses a giant burrowing machine to drill down to the core and explode nuclear warheads to restart the circulation. It’s a plot you’d expect from a 1950’s B-movie, and that’s probably why I like it, but it’s generally considered a ‘guilty pleasure’ movie at best. Still, it got some things right. A weakening of our magnetic field could leave our electronics-based civilization frighteningly vulnerable, and threaten most life on Earth. A complete loss would be disastrous. And some scientists are raising the alarm.

Maybe you did experiments with magnets and iron filings in school, or maybe you’ve just seen drawings of a magnetic field—curved lines around the magnet that curl in and touch the positive and negative poles at each end. In Earth’s case, the north and south poles. Our planet is like a ball in the middle of a giant invisible doughnut. Without that field, we couldn’t live here, and it may be in danger of collapse.

It isn’t because the Earth’s core has shown signs of stopping. No, the concern comes from the fact that we know from geological records (indicators in ancient rock) that the magnetic field has switched poles pretty often during Earth’s history. North becomes South and the magnetic flow reverses. Though the time between such flips varies a lot, it’s averaged about every 200,000 to 300,000 years, and it’s been 780,000 years since the last one so some scientists say we’re overdue.

So what’s the big deal? Your compass reads north when you’re facing south, and some migratory birds get confused? Sure, but it’s what happens during the transition that’s the problem. You guessed it: the magnetic field is significantly weakened—possibly reduced to as little as ten percent of its usual strength at times. And the pole reversal isn’t quick, like flicking a switch. Indications from rock layers show that it might take thousands of years. The unreliability of a compass heading will be the least of our worries.

What makes the Earth’s magnetic field so critical is that it protects the planet’s surface from a bombardment of high-energy particles from space that can wreck DNA in living organisms (causing mutations and cancers, or even quicker cell deaths) and overloads electric wiring and electronic circuitry. That bombardment is happening all the time, but it gets much worse when our sun has indigestion. Solar storms send out mammoth flares of high-energy X-rays and particles plus ionized gases that can really mess up our communications and power grids. A flare in March of 1989 knocked out power all across the Canadian province of Quebec, but it was much smaller than an event recorded back in 1859 when telegraph wires were first spreading over the continents. Known as the Carrington event, that one was so powerful that the northern lights were seen as far south as Tahiti and Cuba. Not only did overloaded equipment fail under the strain, many of the telegraph cables themselves caught fire! And that was with the planet’s protective magnetic field at full strength.

As recently as 2012 a solar storm at least as powerful as the 1859 event sprayed deadly energy out into space, but we dodged that bullet—the storm was on a part of the sun facing away from Earth. A week or ten days earlier, it would have hit us. Here's a good NASA video about the near miss and what could have happened. Now imagine if it had hit us when the magnetic poles had begun a reversal and the Earth’s shielding was at only ten percent of normal.

It’s not a pretty picture. Ionized particles would fry the circuitry of satellites. Magnetic induction would produce enormous amounts of electric current throughout our power grids, blowing transformers and other equipment everywhere exposed to the blast. And since we just don’t have huge numbers of spare transformers lying around, some analysts estimate our civilization could be knocked back to Victorian times.

That’s a worst case scenario raised in the recently published The Spinning Magnet by journalist Alanna Mitchell, and mentioned elsewhere. Others strenuously downplay the danger, although even they admit that we would do well to prepare for fluctuations in the strength of the magnetic field by fortifying our power grids and technological infrastructure.

Whether such a crisis is imminent or not, it sure provides fodder for some juicy disaster fiction! (But solid SF writers, please. Not Hollywood—they just don’t seem to know the difference between meaty and cheesy.)

DOES PSEUDO-SCIENCE HAVE A PLACE IN SCIENCE FICTION?

Telepathy.png

Blogging about the writing of science fiction, I’ve mentioned how tough it is to stay up-to-date on real science and make plausible forecasts about the future. Sometimes scientific theories rejected by the establishment of the time are vindicated by later research, so where do you draw the line between “real” science and ideas labelled “pseudo-science” when it comes to storytelling? After all, we writers take “artistic license” with history and other facts all the time for the sake of a good story (don’t get me started about Hollywood). If you check Wikipedia for a list of topics considered pseudo-science, it’s a long list that includes many established religious beliefs as well as the methods used by your favourite chiropractor or acupuncturist! So how many currently-unprovable concepts are OK to use in science fiction before you’ve blundered across the skeptical divide into fantasy?

Physicists laugh about an esoteric energy called orgone first proposed in the 1930’s by Wilhelm Reich as a kind of universal life force (and still supported by some fringe medical practitioners and others). Yet, what would Star Wars be without The Force? (Mind you it also has ships “making the jump to light speed”, which would have Einstein rolling in his grave so, OK, maybe Star Wars is fantasy.) But Star Trek is science fiction, right? Well, I personally have doubts we’ll ever see transporter technology but it sure makes the stories work better. And think of all of the iconic galactic-empire/federation-type novels that depend on some form of faster-than-light travel because otherwise space is just too damn big. So what if Relativity theory forbids it! The same can be said of time travel, but it’s another of the major tropes of SF and underpins a whole lot of my favourite stories.

Pseudoscience? Or just wishful thinking?

The related concepts of scalar waves, zero point field/energy, and the EM drive are really popular with the fringe crowd, with claims of free energy, propulsion, and healing applications. Even so, zero point energy is used in the ambitious novel Encounter With Tiber co-written by John Barnes and none other than Apollo 11 astronaut Buzz Aldrin. And Arthur C. Clarke gave the book a glowing blurb. Our current understanding of physics insists that, although the vacuum of space has huge energy potential, its equilibrium precludes us making any use of that energy. But who knows what work-arounds could be discovered someday? So is it nonsense to make use of such an idea in purportedly credible SF?

The idea that advanced aliens visited the earth in the past and a) created humans, b) set us on the course toward intelligence (eg. 2001: A Space Odyssey), c) formed the basis for the pantheon of ancient gods and demi-gods, or d) all of the above and more…well it may be mocked as a scientific theory, but has sure proved its potential for some terrific tales.

What about body memory—the thought that memories can reside in body cells other than the brain? I wrote a noir story about a dying man who gets a new body only to discover it isn’t a cloned model but was “previously enjoyed”, because it remembers dying under suspicious circumstances. It’s the title story of a small collection called Body Of Opinion and other stories which you can pick up at my bookstore page. Creepy, but a lot of fun.

One of my very favourite pseudo-scientific concepts in fiction is ESP. I’m a huge fan of John Wyndham’s The Chrysalids with its telepathic communication—I’d love to have that ability, and have used a number of variations on it in my own writing. I think it’s very likely that, when we do encounter an advanced non-human race, communication will also be non-verbal and maybe non-physical. We should prepare by practicing up our mind-melds, don’t you think?

There are a lot more: the concept that our bodies have their own energy field (the qi, for instance), torsion fields for faster-than-light communication, collective memory, various forms of life after death. Heck even the very idea of extraterrestrial aliens is unproven so far.

Pseudoscience?

Only for now, my friend. Only for now.

CAN SF OFFER BETTER WAYS TO GET FROM HERE TO THERE?

Personal drone.png

Over the recent holiday season my wife and I visited family in a large city, including lots of experience with public and private transportation. Subways, streetcars, buses, and hours in a private car over snow-and-traffic-clogged highways moving little or not at all. It made me wonder again why we still don’t have better ways of getting from place to place—faster and more convenient ways. Sure, there are lots of good things to be said about newer mass transit vehicles, given the challenges. But individual self-driving pods would be a lot nicer, and when I consider the four-hour and six-hour drives that separate us from some family members, a Star Trek transporter or Larry Niven’s stepping disks would be a godsend!

It’s often pointed out that, after nearly a century of imagining them, we still don’t have flying cars. Actually, some do exist but they’re hideously expensive prototypes that would still be revoltingly expensive in production, and none are really practical for the workday commute. More like a quirky toy for the private pilot who likes to keep his aircraft in his own garage.

At the other end of the cost scale are a lot of wacky personal street devices that mostly look like variations on a powered skateboard. Fun, maybe, but not terribly useful on a crowded sidewalk or a roadway with cars. Not to mention stairs! Check out this video.

A cool site called Technovelgy has collected transportation concepts proposed in dozens of works of science fiction. It’s revealing that almost all of them fall into a small number of basic categories: cars, flying belts, maglev transports, moving roadways, and teleportation.

Since the invention of the automobile we’ve been obsessed with personal vehicles—might as well call them cars—fast, often self-driving, sometimes self-levitating for a smoother and faster drive, very often able to fly, and once in a while even able to travel in time (who can ever forget Back to the Future’s DeLorean?) The self driving car is enticingly close to becoming practical, and could make a huge difference to urban commuting, if only by eliminating torrents of rage over every other driver’s utter incompetence! I enjoy driving, but I’d gladly give up the privilege in urban environments in exchange for knowing that none of the other vehicles was controlled by idiots. Again, flying cars would be great for long-distance travel but not worth sky-high prices to most people. And amphibious cars would be a treat for those of us who live on islands, but of no value to almost anyone else.

Of course, the terrific versatility of a flying belt (or rocket pack, or maybe the turbofan-powered Martin jetpack) is very appealing. Who doesn’t wish they could fly like a bird? Zip anywhere without waiting in line-ups or hunting for a parking space. But so far its physical manifestations have been lacking, with serious safety and distance limitations. Bad weather would be a pain, too. Given the impressive advances in drone technology due to improvements in battery tech, I can’t say that we’ll never get to a practical personal lifting device. Solving antigravity would do it, but I don’t think I’ll hold my breath for that just yet.

Magnetically-levitating trains, monorails, and personal transport pods already exist, providing much greater speeds than normal tracks. New proposals, like Elon Musk’s Hyperloop (in a vacuum tunnel to further enhance speed) and Tel Aviv’s SkyTran have promise. But development costs are terribly high, which means that governments rarely move ahead with them until conditions get truly desperate. And high-speed maglev transports are really only an advantage over longer distances, not for downtown urban traffic.

For the city dweller, moving sidewalks and roadways might be the answer if we could solve issues of inertia and momentum. We already have “human conveyor belts” in places like airports, but more than one speed is rarely offered. Even in the 1940’s Robert Heinlein described side-by-side “slideways” with velocities up to 100 miles per hour, but did he really think through what it would be like to step from the 60 mph belt to the 80 mph belt beside it? Without some kind of inertia-dampening field, spectacular face-plants would be the norm. And don’t suggest the pneumatic tube variation used in Futurama—an air lift tube might work as a strictly vertical elevator, but otherwise no thanks!

What about teleportation—the most versatile and convenient of all? As big a fan as I am of Star Trek, I have a hard time believing that its transporter technology will ever be possible. That a computing device could accurately locate and reproduce billions of atoms constantly in motion, including electrons in their shells of probability, seems unlikely. I actually consider it more likely (though admittedly not by much!) that a means might be found to warp and pierce space/time in such a way as to produce personal wormholes that would allow us to slip instantly from place to place. I like the idea, until I start to imagine the universe as Swiss cheese.

There is a fringe concept in cosmology proposing that at the quantum level of the zero point field lies an ultimate blueprint underlying the entire cosmos, describing the nature and location of everything. If it's true, and if we could ever decode that information and manipulate it, theoretically we could transform any kind of matter into any other kind. But, more to the point of this blog, we could change our own location coordinates and thereby reappear anywhere we wanted to be. We wouldn’t be travelling in any sense, we’d be altering the condition of the very universe, with ourselves in a different place and time than before. Instantaneous. Painless. Worry-free. (Although you’d have to know your destination with perfect precision and be able to harmlessly remove any matter already existing in that space, or trade places with it.)

Interesting refinements of the regular transportation modes crop up all the time (check out super-cavitating boats and city-wide zip lines in this Listverse article, plus solar-powered and magnetically-charged buses). But it would be cool to come up with something truly new—beyond the main categories—and be able to implement it within our lifetime. My saddle sore backside would thank you.

WHY GO BACK TO THE MOON?

 Saturn Apollo image courtesy of NASA

Saturn Apollo image courtesy of NASA

U.S. President Donald Trump signed a directive this week instructing the National Aeronautics and Space Administration to once again focus on sending a human crew to the Moon. Humans haven’t been on the Moon since the Apollo 17 mission in December of 1972—forty-five years ago—although there have been robotic probe landings by Russia and China. Former President Barack Obama had urged a crewed landing on an asteroid instead, as practice for a Mars voyage. So why does Trump prefer to shift the focus back to the Moon (although, notably, there haven’t yet been any announcements about funding or a timetable)? Perhaps because the Chinese space agency previously announced plans for a manned lunar landing by 2036, and appeared to confirm that intention this past June.

Other than “staying in the lead” in manned lunar exploration, as Trump puts it, why should anyone put that much money and effort into landing humans on the Moon again? It’s already been done.

Actually, I find myself in the rare position of agreeing with The Donald this time. There are lots of reasons that a focus on further Moon exploration is not misplaced. It offers many advantages over other possible destinations in the short term. One of them is that we have already been there, so we have a good idea what to expect, which means explorers can pay less attention to the process of getting and staying there, and more on learning stuff.

The Moon offers a huge surface area and the great variety of its topography can benefit a multitude of purposes. For both research and manufacturing, it provides the advantages of low gravity and a vacuum environment without the disadvantages of zero gravity: liquids can pour, air can circulate thermally, and there is an “up” and a “down” (no small point when you’re working with tools). Extremely high temperatures and extremely low temperatures are both available for a couple of weeks at a time (as compared, for example, to a spinning asteroid). Water on the Moon can be used for human consumption, but also processed to make oxygen for rocket fuel and other chemical reactions. Radio telescopes and other electromagnetic sensing technology can operate on the farside to take advantage of the Moon’s great bulk to block interference from Earth.

We badly need to learn more about the mineral composition of the Moon at large because, in spite of the Apollo missions and numerous unmanned landings, the areas sampled still comprise only a very small percentage of what’s there. Minerals and other elements found on the Moon can not only be used to produce infrastructure on site, but also hurled by mass launchers throughout the solar system much more cheaply than by using rockets and at vastly less expense than shipping objects from Earth. Along with mineral resources native to the Moon, there are certain to be metals and other valuable commodities from the many asteroid strikes on its surface.

From a purely scientific point of view, the Moon can teach us about the origins of the solar system, the accretion of planets, the formation of orbits, and more about asteroids (from those many impact craters).

But the most important advantage of the Moon is that it’s so close. Only a three day journey away. Locations on the near side are in a direct line-of-sight from Earth. Communications suffer a time lag of just over a second instead of many minutes. All of that means lower costs in fuel, time, and crew stress. Less exposure to cosmic radiation (one of the most serious obstacles that Mars-trip planners are struggling to overcome). A much greater chance of rescue in the event of a serious accident. Smaller and less complicated spacecraft (with a reduced need for shielding, extensive recycling facilities, or physical fitness equipment). Much more attractive time-frames for potential space tourists. And the list goes on.

We still have a huge amount to learn about living and working in space. Much of it will inevitably be through trial and error. Although still hazardous, to be sure, the Moon is a safer, more practical practice environment than anywhere else beyond our home planet. In our long journey toward the stars, it’s our front porch.

From a science fiction perspective, our giant natural satellite has captivated our imaginations forever, and there are far too many wonderful literary speculations about it for me to begin to list them. But I do want to touch on one. The premise of Arthur C. Clarke’s short story “The Sentinel”, later to form the basis of 2001: A Space Odyssey is exquisitely logical. That an extraterrestrial species which visited our planet just at the dawn of human intelligence would place a device on the Moon to alert them when humanity reaches the level of space-faring technology is not far-fetched at all. I consider it almost inevitable.

So, yes, let’s go back to the Moon. Let’s find the doorbell and ring it, and then wait to see who answers.

OUR FIRST INTERSTELLAR VISITOR

 NASA JPL artist's illustration

NASA JPL artist's illustration

Some of us believe that our solar system has had visitors from other stars, and others don’t. But last month there was concrete proof.

(Actually, it’s probably rock, not concrete, but it is real and it came from “way out there”.)

It’s an asteroid given the name Oumuamua (a Hawaiian word meaning “a messenger from afar arriving first”) discovered by the Pan-STARRS1 observatory in Maui on October 19, 2017. Not a spaceship full of alien invaders, thankfully, but still pretty interesting because it’s the first confirmed sighting of an object passing through our solar system that we know came from beyond its borders. Oumuamua’s regular changes in brightness lead scientists to believe that it’s probably cigar-shaped, perhaps four hundred meters long (about the size of a very large aircraft carrier) and rotating along its length. None of the asteroids in our system are that shape, which only adds to the mystery. It hurtled around the sun in a path resembling a comet’s orbit but it has no tail or accompanying gas cloud, and it entered the system from far above the plane of the ecliptic (the disk-like zone in which the planets and most other material orbit the sun). It wasn’t spotted until after it had already passed close to the sun, a swing-by that gave it much greater speed and a whole new direction. Don’t worry, it’s not going to come anywhere near Earth, although some scientists are so excited about it that they’re proposing an urgent effort to send a rocket chasing after it.

That probably won’t happen, firstly because such projects can’t be put together overnight, and secondly, because the chase rocket would have to go faster than any man-made object yet created. Still, you can understand their interest. Oumuamua is already changing thinking about the composition of solar systems, and who knows what else we could learn with a good close look? Think of how long it must have been wandering through the void; an orphan; a leftover from the formation of another star, flung away from its home by a Neptune-like planet. Even if it isn’t occupied by anything living, it could provide a lot of physical evidence about conditions long ago in a [star system] far, far away.

A science fiction reader learning of Oumuamua will inevitably be reminded of Arthur C. Clarke’s landmark 1973 novel Rendezvous With Rama, which won just about every SFF award that ever existed. In the novel, a 50-kilometer-long cylindrical object is discovered passing through the solar system and is found to be a mammoth spacecraft—pretty much an artificial world in a big can (reminiscent of a space colony design that’s known as an O’Neill cylinder). Coincidentally, in the story Rama is discovered by a (then fictional) program called Spaceguard tasked with finding and tracking space objects that might threaten Earth—exactly the same job the Pan-STARRS1 observatory was doing when it found Oumuamua!

Could the roving asteroid actually be an alien spacecraft? Well, there haven’t been any signs of that, but we don’t know nearly enough about it to give a definitive No either. And I’m certain that such a possibility has crossed the minds of those scientists so eager to send a reconnaissance mission after it. How could they help but wonder? Unfortunately, Clarke’s book is set in 2131 when spacecraft technology is capable of chasing and catching up with Rama. Our century has seen the Rosetta space probe rendezvous with comet 67P/Churyumov–Gerasimenko—an outstanding feat—but we’re just not up to sending a team of explorers after Oumuamua.

There are similar SF stories, including an excellent novel by Greg Bear called Eon and its sequels, which tell of a giant hollowed-out asteroid that appears in orbit around Earth and includes a long corridor that may lead beyond this universe. Don’t be surprised to see more such tales to come, inspired by the discovery of Oumuamua. Especially since the asteroid approached from a direction called the solar apex, a point in the sky toward which the solar system moves in its orbit through the galaxy.

Which means that wherever Oumuamua came from, we’re headed that way!